INSTALLATION GUIDE REV. AD 04/28/09

The New Standard....Squirter® DTIs for Flange Splice Bolts In Wind Turbine Towers

Squirter_® DTIs for Flange Splice Bolts In Wind Turbine Towers

If the bolt Preloads in Table 1 are what your design calls for: And if you have been using a Torque Value to try to get the right Preload:

*The middle value is sometimes thought to be correct, but individual bolts may vary widely

Table 1		Torque* Nm		
Size ϕ	Preload	Min	Average	Max
M36 8.8 (H8)	458 kN™	2000	2700	3300 Nm
	103 kips	1 <i>4</i> 00	1900	2400 ft-lb
M36 EURO	510 kN№	2200	3000	3600 Nm
	114 kips	1600	2200	2700 ft-lb
M36 10.9 (H10)	572 kN№	2500	3300	4100 Nm
	129 kips	1800	2400	3000 ft-lb
M42 10.9	710 kN™	3500	4500	6000 Nm
	160 kips	2600	3300	4400 ft-lb
M48 10.9	930 kN™	5000	6500	9000Nm
	209 kips	3700	4800	6600 ft-lb

Note 1: Minimum preload as given in EN14399-9 for M36 designation H8

Note 2: From DIN 18800-7, approximately equal to 70% nominal yield

strength of M36 Property Class 10.9

Note 3: Minimum preload as given in EN14399-9 for M36 designation H10 Note 4: DAST Richtlinie 021 OTIS owers Applied Bolting has 5

Squirter_® DTIs that can

get you the following

confidence factor.

Preloads with a 97.7%

Table 2

Size ϕ	Min	Target	Max
M36 8.8 (H8)	458	507	552 kN
	103	114	124 kips
M36 EURO	507	552	596 kN
	114	124	134 kips
M36 10.9 (H10)	572	632	689 kN
	129	142	155 kips
M42 10.9	712	778	845 kN
	160	175	190 kips
M48 10.9	930	1023	1090 kN
	209	230	245 kips

Product Performance Clarifications

Squirter_® DTIs shown on this sheet are specifically designed and approved for use on the nut end of bolts under hardened flat washers as shown in Figure 1. When calibrated and installed as directed, they will produce a bolt preload within the range shown in Table 2, with a 97.7% confidence level. Bolt specifications anticipated for use with these Squirter_® DTIs are EN 14399HV • EN14399HR • 898-1 • DAST Richlinie 021. Other bolt specifications with similar strength may also produce similar results.

Proper Calibration of Squirter® DTIs

Before starting installation, Squirter[®] DTIs MUST be calibrated by the following procedure in a Bolt Tension Calibrator to determine how much squirted silicone is correct:

a) Insert a bolt in Calibrator, place Squirter $^{\textcircled{R}}$ DTI with the DTI on the nut end separated by a flat washer. See Figure 1

b) Tighten the assembly to the Target load as shown in Table 2, with any wrench, just as the bolt would be tightened in the tower flanges.

c) Once tightened, note the appearance, flow volume, and number of squirts emanating from under the DTI at that tension. The squirt should look similar to photo #3 . The number of squirts should be AT LEAST equal to the number of bumps on the DTI less one: for instance, a 10 bump DTI should squirt in at least 9 places.

d) Repeat this test five times and get a visual impression of how much squirt is necessary.

e) Then cover the dial of the Calibrator. Using new Squirter® DTIs, see how close to the target tension you can get by judging when to stop by the squirt appearance alone.

3 Step Process

- 1. Calibrate bolt assembly in a Bolt Tension Calibrator.
- 2. Assemble and tighten in star pattern sequentially. See Figure 2
- 3. Make all squirted DTIs look the same as the ones tightened in the Bolt Tension Calibrator at the correct tension.

Caution For Installers

Make sure the corrosion protection coating on the bolt, nut, flat washer and Squirter[®] DTI are compatible.
 Make sure the hole size is no more then 3mm larger then the bolt

3 Make sure the flange surface under the Squirter® DTI is clean, flat, and within 4 degrees of perpendicular to the bolt.

4 Flat washers under the nuts used to compress Squirter® DTI bumps must be from the list of three specifictions: EN 14399-5, EN 14399-6 (with ID Chamfer facing nut) and/or ASTM F436M.

5 Squirter® DTIs are intended to be fitted on the nut end of the bolt. The DTI can be installed under bolt head- for more information please call Applied Bolting.

Squirter DTI[®] Assembly in Bolt Tension Calibrator

and as installed in Wind Tower Flange

6 Make sure the flanges are brought into firm contact before final tightening.
7 Applied Bolting technical representatives should be present at site to instruct any crew new to using Squirter[®] DTIs. Please call ahead for booking.

1 800 552 1999

1 802 460 3100

email: info@appliedbolting.com